8.5 KiB
title | categories | draft | aliases |
---|---|---|---|
Textris - Creating a terminal-based Tetris clone - Part 1: Pieces and playfield | [tutorial] | true | [/post/textris-1/] |
This is the first in a series of tutorials on creating a terminal-based Tetris clone with Go.
Game pieces (minos) are generated and added to a playfield (matrix).
Disclaimer
Tetris is a registered trademark of the Tetris Holding, LLC.
Rocket Nine Labs is in no way affiliated with Tetris Holding, LLC.
Contents
Minos
Game pieces are called "minos" because they are polyominos. This tutorial focuses on the seven one-sided terominos, where each piece has four blocks.
The number of blocks a mino has is also known as its rank.
I | O | T | J | L | S | Z |
---|---|---|---|---|---|---|
|
██ |
█ |
█ |
█ |
██ |
██ |
Data model
Tetris is played on an X-Y grid. We will store Minos as slices of points.
{{< highlight go >}} type Point struct { X, Y int }
func (p Point) Rotate90() Point { return Point{p.Y, -p.X} } func (p Point) Rotate180() Point { return Point{-p.X, -p.Y} } func (p Point) Rotate270() Point { return Point{-p.Y, p.X} } func (p Point) Reflect() Point { return Point{-p.X, p.Y} }
type Mino []Point
var minoT = Mino{{0, 0}, {1, 0}, {2, 0}, {1, 1}} {{< / highlight >}}
Generation
Instead of hard-coding each piece into our game, let's procedurally generate them. This allows us to play with any size of mino.
Comparing and sorting
To compare minos efficiently while generating, we will compare their string representation. We will define a String method which sorts the coordinates before printing. This allows us to compare duplicate minos just by checking their string values.
{{< highlight go >}} func (m Mino) Len() int { return len(m) } func (m Mino) Swap(i, j int) { m[i], m[j] = m[j], m[i] } func (m Mino) Less(i, j int) bool { return m[i].Y < m[j].Y || (m[i].Y == m[j].Y && m[i].X < m[j].X) }
func (m Mino) String() string { sort.Sort(m)
var b strings.Builder
b.Grow(5*len(m) + (len(m) - 1))
for i := range m {
if i > 0 {
b.WriteRune(',')
}
b.WriteRune('(')
b.WriteString(strconv.Itoa(m[i].X))
b.WriteRune(',')
b.WriteString(strconv.Itoa(m[i].Y))
b.WriteRune(')')
}
return b.String()
} {{< / highlight >}}
Origin returns a translated mino located at 0,0 and with positive coordinates only.
{{< highlight go >}} func (m Mino) minCoords() (int, int) { minx := m[0].X miny := m[0].Y
for _, p := range m[1:] {
if p.X < minx {
minx = p.X
}
if p.Y < miny {
miny = p.Y
}
}
return minx, miny
}
func (m Mino) Origin() Mino { minx, miny := m.minCoords()
newMino := make(Mino, len(m))
for i, p := range m {
newMino[i].X = p.X - minx
newMino[i].Y = p.Y - miny
}
return newMino
} {{< / highlight >}}
Another transformation is applied not only to help identify duplicate minos, but also to retrieve their initial rotation, as pieces should spawn flat-side down.
The flattest side is calculated and a flattened mino is returned.
{{< highlight go >}} func (m Mino) Flatten() Mino { var ( w, h = m.Size() sides [4]int // Left Top Right Bottom ) for i := 0; i < len(m); i++ { if m[i].Y == 0 { sides[3]++ } else if m[i].Y == (h - 1) { sides[1]++ }
if m[i].X == 0 {
sides[0]++
} else if m[i].X == (w - 1) {
sides[2]++
}
}
var (
largestSide = 3
largestLength = sides[3]
)
for i, s := range sides[:2] {
if s > largestLength {
largestSide = i
largestLength = s
}
}
var rotateFunc func(Point) Point
switch largestSide {
case 0: // Left
rotateFunc = Point.Rotate270
case 1: // Top
rotateFunc = Point.Rotate180
case 2: // Right
rotateFunc = Point.Rotate90
default: // Bottom
return m
}
newMino := make(Mino, len(m))
copy(newMino, m)
for i := 0; i < len(m); i++ {
newMino[i] = rotateFunc(newMino[i])
}
return newMino
} {{< / highlight >}}
Variations returns the three other rotations of a mino.
{{< highlight go >}} func (m Mino) Variations() []Mino { v := make([]Mino, 3) for i := 0; i < 3; i++ { v[i] = make(Mino, len(m)) }
for j := 0; j < len(m); j++ {
v[0][j] = m[j].Rotate90()
v[1][j] = m[j].Rotate180()
v[2][j] = m[j].Rotate270()
}
return v
} {{< / highlight >}}
Canonical returns a flattened mino translated to 0,0.
{{< highlight go >}} func (m Mino) Canonical() Mino { var ( ms = m.Origin().String() c = -1 v = m.Origin().Variations() vs string )
for i := 0; i < 3; i++ {
vs = v[i].Origin().String()
if vs < ms {
c = i
ms = vs
}
}
if c == -1 {
return m.Origin().Flatten().Origin()
}
return v[c].Origin().Flatten().Origin()
} {{< / highlight >}}
Generating new minos
Neighborhood returns the Von Neumann neighborhood of a point.
{{< highlight go >}} func (p Point) Neighborhood() []Point { return []Point{ {p.X - 1, p.Y}, {p.X, p.Y - 1}, {p.X + 1, p.Y}, {p.X, p.Y + 1}} } {{< / highlight >}}
NewPoints calculates the neighborhood of each point of a mino and returns only the new points.
{{< highlight go >}} func (m Mino) HasPoint(p Point) bool { for _, mp := range m { if mp == p { return true } }
return false
}
func (m Mino) NewPoints() []Point { var newPoints []Point
for _, p := range m {
for _, np := range p.Neighborhood() {
if m.HasPoint(np) {
continue
}
newPoints = append(newPoints, np)
}
}
return newPoints
} {{< / highlight >}}
NewMinos returns a new mino for every new neighborhood point of a supplied mino.
{{< highlight go >}} func (m Mino) NewMinos() []Mino { points := m.NewPoints()
minos := make([]Mino, len(points))
for i, p := range points {
minos[i] = append(m, p).Canonical()
}
return minos
} {{< / highlight >}}
Generate procedurally generates minos of a supplied rank.
{{< highlight go >}} func Generate(rank int) ([]Mino, error) { switch { case rank < 0: return nil, errors.New("invalid rank") case rank == 0: return []Mino{}, nil case rank == 1: return []Mino{monomino()}, nil default: r, err := Generate(rank - 1) if err != nil { return nil, err }
var (
minos []Mino
s string
found = make(map[string]bool)
)
for _, mino := range r {
for _, newMino := range mino.NewMinos() {
s = newMino.Canonical().String()
if found[s] {
continue
}
minos = append(minos, newMino.Canonical())
found[s] = true
}
}
return minos, nil
}
}
func monomino() Mino { return Mino{{0, 0}} } {{< / highlight >}}
Matrix
The matrix is typically 10 blocks wide and 20 blocks high.
Data model
A block is an integer representing the contents of a single X-Y coordinate on the matrix.
{{< highlight go >}} type Block int
const ( BlockNone Block = iota BlockSolidBlue BlockSolidCyan BlockSolidRed BlockSolidYellow BlockSolidMagenta BlockSolidGreen BlockSolidOrange ) {{< / highlight >}}
The matrix will be stored as a slice of blocks. The zero-value of Block is a blank space.
The matrix has a width, height and buffer height. The buffer is additional space above the visible playfield.
{{< highlight go >}} type Matrix struct { W int // Width H in // Height B int // Buffer height
M []Block // Contents
}
func NewMatrix(w int, h int, b int) Matrix { m := Matrix{ W: w, H: h, B: b, M: make([]Block, w(h+b)), }
return &m
} {{< / highlight >}}
To retrieve the contents of a point, we calculate its index by multiplying the Y coordinate with the matrix width and adding the X coordinate.
{{< highlight go >}} func I(x int, y int, w int) int { if x < 0 || x >= w || y < 0 { log.Panicf("failed to retrieve index for %d,%d width %d: invalid coordinates", x, y, w) }
return (y * w) + x
}
func (m *Matrix) Block(x int, y int) Block { if y >= m.H+m.B { log.Panicf("failed to retrieve block at %d,%d: invalid y coordinate", x, y) }
index := I(x, y, m.W)
return m.M[index]
} {{< / highlight >}}